Global Ensemble Predictions
of 2009’s Tropical Cyclones
Initialized with an
Ensemble Kalman Filter



All due credit
to Jeff Whitaker,
chief number
cruncher,
EnKF innovator

(he’s at ECMWEF currently
implementing
the EnKF code there)




The ensemble Kalman Filter (EnKF)

e A method for the initialization of ensemble forecasts
that is conceptually appealing for hurricanes

— “Flow-dependent” background-error covariances may be
useful to achieving quality analyses
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Questions

Can hurricane ensemble forecasts from a global

model be improved substantially by:

— using an EnKF for data assimilation & ensemble
initialization?

— using a higher-resolution version of global model?

— using new “TCVitals” sea-level pressure observations
in the data assimilation?

How much of any improvement can be attributed
to EnKF vs. higher resolution model vs. new obs?

How do experimental forecasts compare with
operational forecasts from worldwide centers?

Multi-model ensembles provide improvement?



Testing performed

Ran a global ensemble square-root filter (“EnKF”) data assimilation
— T382L64 (~35 km) version of NCEP GFS, 60 members

— Full observational data stream + “TCVitals” (min central
pressure)

— 20-member ensemble forecasts to 7 days for most active days
during hurricane season, late July to early October 2009.

Other operational ensembles (next page)

Also useful: deterministic forecasts from T382 GFS/EnKF,
operational GFS/GSI and parallel GFS/GSI with TCVitals

Compare against “best track” files compiled by NHC and Joint
Typhoon Warning Center



Ensemble systems evaluated

* Run ourselves on NSF U Texas computer:
— T382L64 “GFS/EnKF” (experimental)
— 30-km NOAA “FIM” off GFS/EnKF IC’s (experimental)

— For diagnostics at the end of the talk, “T126L28 GFS/EnKF” initialized off
T382L64 EnKF ICs

* Operational:
— “NCEP” T126L28 GFS/GSI/ETR

— “CMC” ensemble, 0.9-degree, L28, EnKF perts around 4D-Var control.

— “UKMO” MOGREPS ensemble, 1.25*0.83-degree, L38, ETKF perts around 4D-Var
control

— “ECMWHF” T399L62, v. 35r2 and 35r3 (with stochastic physics upgrade). Singular
vector perts around 4D-Var control



What we don’t have, and wish we did

* T382L64 GFS/EnKF and subsequent
ensembles, without TCVitals observations

 T126L28 GFS/EnKF and subsequent ensembles
(or T190L64) to cleanly examine effect of
resolution

* A bigger sample (lackluster Atlantic season,
only global-composite statistics likely to be
worth interpreting).



Rules for including a particular storm
in “homogeneous” comparisons of
models A vs. B

Storm must be tracked and at least tropical depression
strength at initial time of forecast

Ensemble scores com|’ _ _ _ N
This rule conveniently allows us to skirt
forecasts computed.

the issue of whether the forecast model

At least 8 members m over-forecasts TC-genesis. In fact, both
o T382 GFS/EnKF and FIM/EnKF did
statistics; mean error over-forecast.

storms tracked. \_ %

When performing “homogeneous” comparison of forecast
model A to forecast model B, count a storm as a sample only
when both models have forecast available.



Definitions & metrics

Absolute error (km) of ens.-mean track forecast for the ith of
m samples E;(?)

Abs. difference of the jth of n members from the ens mean: D,

E,
Track average error: 7., _ 2; )
; zn‘dDi,j
Spread for ith sample ..o, S.(1)="
n
Averagespread: = XS
S = =1



Data availability

Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday
Jul31:F | Aug1:F
2:F.E 3:F 4:F 5:F 6: F,U 7:F 8:F
9:F 10: F.G 11:F 12:F 13 14 15
16 17 18 19 20 21 22
23:U 24:F 25 26: G 27:F 28: F 29: F
30 31 Sep1:G 2 3 4:F 5
6 7:F 8 9 10 11 12
13 14 15:C 16 17 18 19
20 21 22 23:FE 24:F 25 26: E
27:EU 28:U

Table 1: Availability of 0000 UTC global ensemble forecast data between 31 July

2009 and 28 September 2009. For a particular date, “F” indicates that FIM

ensemble data was unavailable for this initial time; E indicates that ECMWF

ensemble was unavailable; U indicates UKMO; C indicates CMC; N indicates

NCEP, and G indicates experimental GEFS/EnKF.




Review of Atlantic Basin activity

Atlantic Basin Storms, 31 Jul 2009 to 03 Oct 2009
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Review of Western-Pacific activity

Wes’rern Pacific Storms, 31 Jul 2009 ’ro 03 Oct 2009
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Typhoon Morakot (Taiwan floods)

Slow-Moving Typhoon Morakot Inundates Taiwan

South China Sea A
250 km __ N

Total Rainfall (mm) Storm Intensity (Category)
I N .
<100 300 500 700 2900 D TS | 2

acquired August 3 - 9, 2009

http://earthobservatory.nasa.gov/I0OTD/view.php?id=39747
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Initialized 00 UTC
5 August 2009.

* indicates observed best-

track position.

Bi-variate normal distribution
fit to ensemble member
positions; contour encloses
90% of fitted probability.

GEFS/EnKF a bit north and

too fast.

NCEP has northward &
westward bias, few members

track.

ECMWEF tracks decent up to

Taiwan landfall

CMC has very large spread,
esp. after landfall.

UKMO too north,
too fast.
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54-h ensembles from
T382 GFS & EnKF initial conditions.

member 01 member 02 member 03 member 04
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Intense vortices in
forecasts, with
ensembles of
forecast positions
relatively close

to the observed
position (red dot).
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54-h ensembles from experimental
T382 GFS & GSI / operational ET perturbations

GSI/ET ensemble 54-hr fcst from 2009080500

Note that GFS
member 01 member 02 member 03 member 04 .
' > CZ Z N model resolution

is much greater
than current
operational, T126

GSI-ET initialized
ensemble
produces less
intense vortices,
and forecasts are
slow in moving
typhoon west.

1001 (© 100
NR

This operational
version of GSI did
not include
TCVitals central
pressure obs.
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(a) GFS/EnKF (b) NCEP
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particularly good.
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Example:
Hurricane Bill

Initialized 00 UTC 19 August 20009.

All models slow, to varying extents.

GEFS/EnKF, ECMWEF , NCEP, FIM
tracks decent.

UKMO, CMC have westward bias.

(a) GFS/EnKF

(b) NCEP
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(b) ECMWF operational

ECMWF spread
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Track error major
findings:

(1) Experimental T382
GFS/EnKF beats NCEP
operational handily.

(2) Experimental T382
GFS/EnKF competitive
with ECMWF

(3) Experimental T382
GFS/EnKF has overall
spread-error calibration.
(4) FIM/EnKF not quite
as skillful as GFS/EnKF.
(5) CMC not as skillful,
but calibrated.

(6) UKMO not as skillful,
under-spread.
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Mean Error and Spread (km)

800 |

600

400

200

(a) NCEP operational

(b) ECMWF operational

(103) (79) (69) (83) (43) (31) (25) (22) (15) (11) 7]

..... NCEP spread
——— NCEP mean error
..... GFS/EnKF spread
—— GFS/EnKF mean error

xS
G

Forecast Lead (days)

3

§, 800 [ (102 (78) (85) (55) (47) (35) (31) (24) (21) (17) ] .
s I Track error major
N @ [ eeenn ECMWF spread ]
] a 600 [ ggg}Vé’ |r(rla-_ecm er:ior ﬁ d. .
: [ " GFS/EnKF mean srror n Ings’
N c 400 i
O
1 £ 200f 1 (1) Experimental T382
. . 5 of , GFS/EnKF beats NCEP
4 5 = 0 1 2 3

5  operational handily.
i 382

Forecast Lead (days)

(¢) CMC operational
(108) (88) (73) (s8) (48) (39) (33) (25) (20)

T CMC spread

—— CMC mean error

[ ..., GFS/EnKF spread
—— GFS/EnKF mean error

A notable success for NCEP GFS and ESRL EnKF! 2

A word of caution: look at other norms, and ECMWF °M:
still has a substantial lead. e

Forecast Lead (days)

Mean Error and Spread (km)

3

0]
(=]
o

2]
o
o

4 F.

) P A

[ e FIM/EnKF spread
[ —— FIM/EnKF mean error
Lo GFS/EnKF spread

(60) (S1) (43) (37) (32) (25) (22) (16) (14) (12) 7]

(6) UKMO not as skillful,
under-spread.

—— GFS/EnKF mean error

1 2 3 4 5
Forecast Lead (days)



Example: RMS error and AC, 2500

ECMWF T399 GFS/GSI-ET T126 GFS/EnKF T382

RMSE 500-mb

height, N. Hem. 32.35 39.98 36.22
RMSE 500-mb

height, N. Hem. 51.14 63.12 56.72

AC 500-mb height,

N. Hem. 0.888 0.832 0.854

AC 500-mb height,

N. Hem. 0.891 0.829 0.856

Table 1: Errors and anomaly correlations of forecasts from the 2009 operational ECMWF
T399 ensemble-mean forecasts, the operational GFS-based ensemble at NCEP (GSI initial
condition, T126 forecast model), and the experimental T382 GFS ensemble initialized with
the EnKF. All errors are measured with respect to the own products’s analysis, and all
verifications are performed on a 2.5-degree lat-lon grid. RMSE indicated the root-mean
square error, AC the anomaly correlation.
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(a) GFS/EnKF [perfeci model]
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Ellipse eccentricity analysis

Question: are errors projections larger along the direction
where the ellipse is stretched out?

' _ _ 1/2
X, = (x/l(l) X e 5 Xy T X )/(nt - 1)

— — 1/2
X¢ ( Koty = Xgs - ,x¢(nt)—x¢)/(nt—1)

A = longitude, ¢ = latitude, nt = #tracked

F=XX"=SAS'=SAST = (SAI/Z)(SAUZ)T 3

E > should be consistent with <<‘X, .S, ‘>>

)

) = average over cases; ((+)) = average over cases, members

(
<‘ > should be consistent with <<
(s



(non-homogeneous)

Distance (km)

Distance (km)

Ellipse eccentricity analysis

(a) GFS/EnKF

500
—o << I Xi. 'S1 |>>
400r [ < |E-S, |>
— << | X+ S, |>>
300 - 1
e < |ESy > .
200 '
100 -
0 1 1 1 1 1 1
0 1 2 3 4 5
Forecast lead (days)
(d) CMC
500 T T T
400 -
300
200+
100 e
0

1 2 3 4 5
Forecast lead (days)

(b) NCEP (c) ECMWF
500 - : 500 ' '
400} .f’ - 400
E ' e
X 300t R < 300t
o S S
.E 200 "... . / 5 onnl
2
Notes for GFS/EnKF:

(1) Along major axis of ellipse, consistent
average projection error of errors and
projection of members; spread well
estimated.

(2) Along minor axis of ellipse, slightly larger
projection of errors than projection of
members. Too little spread.

(3) Together, imply more isotropy needed.

(4) Still (dashed lines) some separation of

projection of error onto ellipses indicates
\\there is some skill in forecasting ellipticity.




MGX|mum Wind Speed BICIS
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non-homogeneous; error bars are 5™, 95t percentiles of normal distribution fit to data.



Source of rapid decrease of GFS/EnKF
wind speeds between day O and day 17

Day—1 forecast wind speed (ms™')

Day—0 analyzed wind speed (ms™')
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(b) GSI—Parallel An vs. Fc
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Rapid decrease in speed
of GFS/EnKF forecasts;
not so for GSI initialized

But looking at analyzed
wind speeds, GFS/EnKF
produces appropriately
strong vortex, GSI does
not.



Why the persistent under-forecast of the
strength of vortices?

at coarse resolution the model simply cannot
support intense vortices, even if properly analyzed

during the
subsequent
6-h forecast

EnKF, after
adjustment

to observations model reproduces

a vortex at the only
scales it can support
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Increments in GFS/EnKF and GSI-
parallel to TCVitals SLP

Hurricane lke, 00 UTC 4 September 2008
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Change to EnKF initializes much deeper, tighter vortex; contours every 1 hPa.



(a) Deterministic forecast track error
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Mean Error & Spread (km)

Mean Error & Spread (km)

(a) GFS/EnKF/T126 vs. GFS/EnKF/T382
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Trying to understand
effects of TCVitals,
EnKF, resolution,
ensemble averaging

modest impact on track forecast
from degrading the resolution
of the forecast (still T382 during
the data assimilation).

larger impact of GFS/EnKF at
«—— 1126 vs. operational. However,
2009 operational version had
more diffusion, so that
complicates analysis.



Tropical winds from parallel tests of
deterministic T382 GFS/GSI & GFS/EnKF

o 72-h 250 hPa Zonal Wind Anomaly Correlation (Tropics)
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verification time

EnKF provides consistently better wind forecasts; better steering of tropical cyclones?



Improvements next summer

* Higher resolution, if possible.
* Vortex relocation to ens. mean prior?

* TCVitals obs error estimates incorporated into
data assimilation?

Cat1l Cat 2 Cat 3 Cat4 Cat5s
3.3 6.1 9.5 11.7 13.9 16.1 19.1

* Also: estimate representativeness errors of

TCVitals
e Better treatment of model-error covariances.

* table c/o Ryan Torn, U Albany



Multi-model
forecast?
Hurricane Bill

Initialized 00 UTC 19 August 20009.

What if we combine the forecasts
in some fashion, using their error
statistics?

50N T
40N |

30N |

20N |5

80w 70W 60W So0w

40N |
30N |

20N [

(a) GFS/EnKF

(b) NCEP

LY S —y 7 a——
4ON |
30N |

20N |5

8ow 70W 60W 50w

4ON |
30N |

20N [

80w 70W 60W 50w

SON T;

30N |

40N |

20N [

80w 70W 60W 50w

50N T
4ON |
30N |

20N | %

80w 70W 60W Sow




Proposed multi-model technique

* Estimate average absolute error g, , of the
ensemble-mean forecast for a given lead time
t and forecast model m, quasi-cross validated
(e.g., when estimating error for Bill, don’t use
Bill data, but ok to use every other storm).

e Set weights for every available member
forecast to be 1/0°,,

e Estimate weighted ensemble mean and
weighted ensemble covariance matrix.




An experimental multi-model product

Dot area is proportional
to the weighting applied
to that member

® = ens. mean position
* = observed position
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Multi-model error (GEFS/EnKF,
ECMWE, FIM, UKMO, CMC, NCEP)

NCEP T382 GEFS/EnKF vs. Multi—Model
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Not much improvement from multi-model. Why?



CRPSS

Multi-model 2-m temperature forecasts

All models (with 30-day bias correction) Best 4 models (with 30-day bias correction)
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collaborative work led by Renate Hagedorn, ECMWF; conditionally accepted, MWR

Lesson: discard less skillful models?



Ensemble Position Error (km)
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Now some improvement, ~ 6 - 9 hours lead.



Ensemble Position Error (km)
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Multi-model error
(GEFS/EnKF, FIM only)
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Degradation relative to GFS/EnKF alone. Why?



FIM—mean longitudinal track error (km)

Correlation of errors, GFS/EnKF & FIM

(a) Day—1 longitudinal track error
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r is the Spearman rank correlation.

(b) Day—3 longitudinal track error
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Multi-model forecasts generally predicated on the assumption that models
provide independent information. In this case, FIM errors are highly co-linear

with GFS/EnKF errors.



Correlation of errors, GFS/EnKF & ECMWF
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Less co-linearity of forecast errors between GFS/EnKF & ECMWEF systems; the
greater independence of their forecast errors permits a multi-model improvement.



Distance (km)

500

400

W
o
o

N
o
o

100

Multi-model ellipse eccentricity

(a) GFS/EnKF

' 500
— << | X, S, |>>
eie < |E =S, |> 1 400
— << | X S, |>> €
4 X 300
@0 < l E ° Sz |> ’..-. o
o
' 5
2 200
2
100
1 1 1 1 1 O
1 2 3 4 5

Forecast lead (days)

(b) ECMWF

1 2 3 4
Forecast lead (days)

Distance (km)

500

400

W
o
o

N
o
o

100

(c) Multi—=model

T

1 2 3 4 5
Forecast lead (days)

p,

suggests that multi-model forecast now has a bit too much spread in
directions of trailing eigenvectors. Also, the projection of error onto
the trailing eigenvector has decreased.
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Conclusions, part 1

EnKF + high-resolution global model showed remarkable
success in 2009 season

— track forecasts clearly better than NCEP, CMC operational, FIM.
— good consistency between ensemble spread and error.

— generally better tropical wind analyses.

— information on ellipticity of track positions useful

Improvement in TC forecasts likely due to increased model
resolution, EnKF, and TCVitals.

— however, forecast resolution had smaller impact when data assimilation with
hi-res EnKF

— TCVitals had small impact in GSI; parallel tests with/without in EnKF not
conducted. Presumed effect larger.



Conclusions, part 2

 Multi-model forecasts provided some benefit to

tracks
— No benefit when using all ensemble systems, including poorer ones
— Some benefit of just GFS/EnKF + ECMWF

* Some questions

— improve methods for vortex initialization in EnKF. Incorporate
relocation?

— methods for treating hurricane-related model error?
— resolution impacts of global model in EnKF?
— effect of assimilating position and intensity of TCVitals separately?

— will nesting of high-resolution regional EnKF and SREF forecasts
provide even better results?



The future

 ESRL and EMC have a signed agreement to
work together toward the development of a
hybrid XD-Var/EnKF, operational 3 years

hence.

* We will continue testing the EnKF with as high
a resolution global model as possible through
HFIP.

 We partner with AOML scientists to develop a
consistent nested regional WRF/EnKF system.
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2008 season, GFS/EnKF vs. ECMWF

NCEP T382 GEFS/EnKF vs. ECMWF, 2008
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For 2008, EnKF-based system does not compare favorably to ECMWF. Why?
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Typhoon Hagupit, 2008 GFS/EnKF bust
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GFS statistics are strongly affected by two samples from Typhoon Hagupit. Here’s one.



2008 season, GFS/EnKF vs. ECMWF
(without Hagupit)

\x_E/ NCEP T382 GEFS/EHKF vs. ECMWF, 2008
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Now GFS/EnKF is more similar in performance, though in 2008 both systems
exhibit a lack of spread.



ECMWF absolute error

GFS/EnKF vs. ECMWEF track errors

(a) Day +1 Position Er
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Canonical EnKF
update equations (for time t)

X, = X€+K(yi —HX’Z) |
L Y, =YYy,

K:PbHT(HPbHT+R)

Pb :XXT yZNN(O,R)

b b b b
X:(x1 -X ,....X —X )

Notes: (1) An ensemble of n parallel data assimilation cycles is conducted,
assimilating perturbed observations .

(2) Background-error covariances are estimated using the ensemble.

(back)



Propagation of state and error
covariances in EnKF

(P2 never

Py =([x()-%()][x ()-% ()] ) e

Xf (t -+ 1) — MXla (t) if forecast model is “perfect”; M is

forward model operator

...or something similar,
if forecast model imperfect.



Perfect-model EnKF schematic
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(This schematic
is a bit of an
inappropriate
simplification,
for EnKF uses
every member
to estimate
background-

error covariances)



